博客
关于我
中科大-凸优化 笔记(lec45)-强凸性等价不等式
阅读量:314 次
发布时间:2019-03-04

本文共 642 字,大约阅读时间需要 2 分钟。

函数性质的分析

在机器学习和优化算法中,函数性质的分析是非常重要的一步。函数$f(x)$的性质直接决定了算法的选择和性能。

首先,我们需要明确函数$f(x)$的定义域和值域。定义域指的是输入$x$可以取的所有可能值,值域则是函数$f(x)$可以输出的所有可能结果。了解这些有助于我们在实际应用中限制算法的搜索空间。

其次,函数$f(x)$的连续性、可导性是关键因素。在大多数优化问题中,我们假设函数是可导的,这样我们才能使用梯度下降等方法来寻找最小值。

此外,函数$f(x)$的凸性或凹性也是重要的性质。凸函数意味着函数图像从下往上凸,而凹函数则从上往下凸。凸函数在优化问题中更容易找到全局最小值,而凹函数可能会有多个极值点。

梯度下降法

梯度下降法是一种迭代优化算法,用于寻找函数$f(x)$的最小值。其核心思想是通过不断地调整输入$x$,使得函数值$f(x)$逐步减小。

具体来说,梯度下降法的迭代公式为:

$$x_{k+1} = x_k - \eta \nabla f(x_k)$$

其中$\eta$是学习率,$\nabla f(x_k)$是函数$f(x)$在$x_k$处的梯度。

梯度下降法的优点是简单易实现,适用于许多优化问题。然而,其缺点是容易陷入局部最小值,特别是在函数$f(x)$存在多个极值点的情况下。

为了避免这一问题,通常会结合其他优化算法如随机梯度下降、 AdaBoost等,或者采用不同的初始条件。

下一章传送门

如果需要继续阅读后续内容,请访问指定的链接。

转载地址:http://vepq.baihongyu.com/

你可能感兴趣的文章
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
Netty事件注册机制深入解析
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Vue踩坑笔记 - 关于vue静态资源引入的问题
查看>>
Netty工作笔记0025---SocketChannel API
查看>>
Netty工作笔记0027---NIO 网络编程应用--群聊系统2--服务器编写2
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0057---Netty群聊系统服务端
查看>>